A mechanistic tool for analysis of specific combinations of traffic, climate, base materials and sealant condition on subbase erosion and pavement performance is the first tool of its kind that allows assessment of the sealant effectiveness on pavement performance.

The Seal/No Seal (SNS) Group has released the results of the study by Dr. Dan Zollinger at the Texas A&M Transportation Institute (TTI), called Qualification of Joint Sealant Effectiveness Regarding Jointed Concrete Pavement Performance.

This study did not attempt to research sealant effectiveness through traditional approaches such as characterizing sealant performance in terms of joint seal properties. Instead, TTI took a more rigorous approach to evaluate performance in terms of the amount of infiltration through the joint, and the consequential impacts on subbase erosion and pavement distress.

Another aspect of the study evaluated the use of ground penetrating radar (GPR) to detect the existence of moisture under the slabs. With the use of GPR, it now appears feasible to detect the existence of moisture under the slabs in the vicinity of the joint from a water infiltration standpoint, and more importantly, to assess when a sealant is no longer effective.

The Seal/No Seal Group was formed to respond to the age-old industry question about the value of sealing concrete pavement joints. Its mission is to develop a committed membership that takes responsibility for determining the long-term effectiveness of sealants in concrete pavements.

RESULTS OF RESEARCH

One of the most important effects of joint sealant effectiveness on concrete pavement performance is the potential for subbase erosion. The Excel spreadsheet-based application developed by Zollinger in support of this research demonstrates several aspects of sealant effectiveness on pavement performance.

The spreadsheet uses a mechanistic-empirical approach to consider the three main elements of subbase erosion: the rate of erosion of the base/subbase, existence of moisture under the slab (as reflected by the number of wet days), and traffic. The model was calibrated with lab and field data and is useful for design and maintenance purposes.

The experimental results showed that if joint seals are properly installed, they can be very effective in preventing moisture infiltration. Unsealed joints have significantly higher inflow rates compared to joints with damaged sealants.

The water infiltration rates for dirty joints, such as sealants installed in an unclean reservoir, or dirt-filled unsealed joints, were as high as those for clean joints with 50 percent debonding.

Further, Zollinger found the management of a sustainable concrete pavement system requires greater emphasis on performance monitoring, rather than performance repair; it's a concept not widely practiced, and which challenges traditional repair and rehabilitation philosophies.

WHY SEAL JOINTS?

The primary purpose for sealing joints in rigid pavement is to prevent or reduce the amount of water and incompressibles infiltrating into the pavement structure. It is well accepted that both issues contribute to a variety of distress types eventually deteriorating the pavement structure, resulting in decreased service life.

An inevitable consequence of water infiltration through joints in concrete pavement is the erosion at the slab/subbase interface. Subbase erosion directly contributes to the process of joint faulting, which can involve several...
evaluate the potential for using GPR to detect when the sealant was allowing water infiltration into the joint. A handheld portable GPR unit was used for this testing. Subbase samples were also retrieved through core holes in the pavement to enable laboratory erosion testing using a Hamburg Wheel Rutting device.

**M-E FAULT PREDICTION MODEL**

A mechanistic-empirical fault prediction model previously developed under National Ready Mixed Concrete Association (NRMCA) funding was improved upon as part of this research. The impact of joint seal effectiveness was directly employed within the fault prediction model.

One important factor that was addressed in the model was a means to evaluate the number of “wet” days. The number of wet days is the actual number of days per year that water exists underneath the slab at the slab/subbase interface.

This number is not only a function of annual rainfall but also a function of surface inflow, sealant effectiveness and subbase drainability. The number of wet days was determined with respect to probability functions that can be used for each site to evaluate the number of days that water exists underneath a slab.

The erosion resistance of materials, number of wet days, and traffic load were defined and coupled in this model to effectively analyze the potential for faulting and erosion in jointed concrete pavements.

The model can be calibrated for local conditions as a function of distinct characteristics of the subbase or subgrade, which is an important capability in life cycle analysis. The model has been successfully implemented into a spreadsheet format. Results show that the model fits well with the field data and can be implemented for design and maintenance management purposes.

Both the full report, and a shorter Tech Brief, from the TTI research may be downloaded at http://sealnoseal.org/news.htm.